A subspace co-training framework for multi-view clustering
نویسندگان
چکیده
0167-8655/$ see front matter 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.patrec.2013.12.003 q This paper has been recommended for acceptance by Jesús Ariel Carrasco Ochoa. ⇑ Corresponding author. Tel.: +358 41 4996553. E-mail addresses: [email protected], [email protected] (X. Zhao), [email protected] (N. Evans), [email protected] (J.-L. Dugelay). Xuran Zhao ⇑, Nicholas Evans, Jean-Luc Dugelay
منابع مشابه
Joint Adaptive Neighbours and Metric Learning for Multi-view Subspace Clustering
Due to the existence of various views or representations in many real-world data, multi-view learning has drawn much attention recently. Multi-view spectral clustering methods based on similarity matrixes or graphs are pretty popular. Generally, these algorithms learn informative graphs by directly utilizing original data. However, in the real-world applications, original data often contain noi...
متن کاملGuided Co-training for Large-Scale Multi-View Spectral Clustering
In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clus...
متن کاملLow-rank Multi-view Clustering in Third-Order Tensor Space
The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-r...
متن کاملConvex Subspace Representation Learning from Multi-View Data
Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...
متن کاملMulti-view low-rank sparse subspace clustering
Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 41 شماره
صفحات -
تاریخ انتشار 2014